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ABSTRACT
With the service level playing an increasingly essential role in the service-oriented manufactur-
ing (SOM) supply chain, the distribution network design can be heavily affected by the customer
behaviour based on their satisfaction of services. In this paper, we consider the service level for ser-
vice time and delivery quantity separately. A novel mixed integer non-linear programming model
is proposed to design the multi-period distribution network from a fourth-party logistics (4PL) per-
spective. The customer satisfaction based on prospect theory is maximised while considering the
investment budget and the service level. A scenario-based linear reformulation is proposed to
find the optimal solution when the problem scale is small. For a large-scale problem, we propose
an individual-driven Q-learning based memetic particle swarm optimisation algorithm. Numeri-
cal experiments are conducted to demonstrate the effectiveness and efficiency of the proposed
algorithm. Furthermore, the impact of service modes, different customer behaviour, and customer
satisfaction evaluation periods on distribution network is investigated. We find that the length of
evaluation periods leads to differences in customer satisfaction due to different perceptions of ‘small
loss’ and ‘big gain’ by boundedly rational customers.
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1. Introduction

Service-oriented manufacturing (SOM) has gradually
become an emerging business paradigm that integrates
service and manufacturing (Huang et al. 2020; Jiang
et al. 2022; Rymaszewska, Helo, and Gunasekaran 2017).
Nowadays, besides selling the products, manufacturers
are making more profit by providing services (He et al.
2021). For example, as of 1 April 2020, the Toyota listed
on its website that Toyota offers parts logistics services in
different countries around the world, which has helped
Toyota capture the absolute aftermarket. As of 10 May
2021, the Toyota listed on its website that Toyota out-
sources its logistics services to the third-party logistics
(3PL) to focus on their core product business. A 3PL
provider offers transportation services from plants to
customers, however, is not able to offer integrated solu-
tions for the SOM supply chain. Instead of relying on
the 3PL providers, some large manufacturers (e.g. Haier
[Lee 2016] and Hisense [Cheng 2021]) have recently
cooperated with Cainiao Logistics (the largest fourth-
party logistics [4PL] provider in China) in supply chain
solutions.

CONTACT Min Huang mhuang@mail.neu.edu.cn College of Information Science and Engineering, Northeastern University, Shenyang 110819,
Liaoning, People’s Republic of China

The concept of 4PL was originally brought up by
Accenture as an integrator that provides comprehensive
supply chain solutions by integrating the resources, tech-
nologies and capabilities of its own and other organi-
sations (Gattorna and Jones 1998). A 4PL provider can
strategically integrate multiple 3PL providers and offer
comprehensive supply chain solutions with low cost, high
customer satisfaction and strong reliability through rea-
sonable decisions on logistics facilities, product distri-
bution and transportation providers (Huang, Tu, et al.
2019). Compared with a single 3PL provider with limited
capabilities, a 4PL provider is able to offer the logis-
tics services of higher quality, so is more preferred by
the SOM supply chain. 4PL has three operating modes:
synergy plus, solution integrator and industry integra-
tor. Among them, as the core mode, solution integrator
mode can provide the complete supply chain solution
for a single company in a certain industry (Büyüközkan,
Feyzioğlu, and Ersoy 2009). As one of the most impor-
tant factors in the SOM supply chain management, net-
work design has a great impact on strategic, tactical,
and operational decisions. In this problem, the products
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are transported by plants to customers via distribution
centres (DCs).

In today’s fast-paced competitive environment, many
parameters such as potential market demands, costs,
and capabilities of DCs and transportation routes may
change. There would be a potentially catastrophic weak-
ness if the network could not be adjusted in time (Janje-
vic, Winkenbach, and Rice 2020). Therefore, it is neces-
sary to consider regular adjustments to the distribution
network. In this case, there is usually a set of discrete
time points, which divide the distributionnetwork design
into several different periods. This is known as the multi-
period distribution network design. It solves the problem
that the update period is long and cannotwell adapt to the
actual dynamic scenarios.

In addition, high customer satisfaction and low cost in
the distribution network are urgently needed for supply
chain management (Lim et al. 2006). For manufactur-
ing companies that provide both products and services,
there are more likely to be financial constraints (Jiang,
Feng, and Yi 2021). Therefore, it is essential to eval-
uate the distribution network design in terms of both
operating costs and customer satisfaction. Marketing91
classifies customer satisfaction on 1–5 levels, with level
1 representing the lowest customer satisfaction. These
customers are likely to leave the company and even den-
igrate the company. While the other levels of customers
will not guarantee a positive evaluation, but there will be
no malicious slander (Bhasin 2020). Low-satisfied cus-
tomers are particularly important to companies. At the
same time, different companies have different evaluation
periods for customer satisfaction. Some large companies
measure overall customer satisfaction over a long period.
For small and medium-sized companies, customer sat-
isfaction may be assessed on a shorter period to avoid
customer churn. In the logistics industry, customers are
the bounded rational agents (Wang et al. 2021). People
are often influenced by various factors to make ‘irra-
tional’ decisions that are inconsistent with rational stan-
dards. Some people are risk neutral, while others may be
risk averse. Therefore, it is very important to consider
bounded rationality behaviour. The prospect theory (PT)
value function can reflect the customers psychological
criteria for satisfaction through a functional relationship
between the actual service level and the service level
reference point.

The 4PL network design (4PLND) problem is NP-
hard, while the PT value function is S-shaped and
non-convex (Wang et al. 2021). Obtaining the opti-
mal solution to such complex, large-scale problem in
a reasonable computational time is extremely difficult.
Over the past few decades, meta-heuristics have received
much attention due to their advantage and efficiency

in solving large-scale real-world supply chain net-
work design (SCND) problem. For the single-objective
SCND problem, the particle swarm optimisation (PSO),
genetic algorithm (GA) and differential evolution (DE)
algorithm are widely used (Faramarzi-Oghani et al.
2022). Among them, PSO algorithm has good applica-
bility in large-scale and complex networks (Soleimani
and Kannan 2015; Huang, Lv, et al. 2019; Zhang et al.
2020;Wang et al. 2021). However, the PSO algorithm has
the disadvantages of being prone to premature conver-
gence and falling into the local optimum solution (Zhu
and Zhang 2008). In this study, reinforcement learning
is introduced to guide the local search strategy to help
the PSO algorithm to jump out of the local optimum.
Q-learning-based reinforcement learning can learn the
optimal local search strategy by interacting with the envi-
ronment through a trial-and-error procedure, and guar-
antee the optimal search state for the evolutionary pro-
cess through reward/penalty techniques. More rigorous
supports for the proposed algorithm will be provided in
the numerical experiments in our study.

This study mainly focuses on the SOM supply chain
network design problem, i.e. determining a multi-period
distribution network while considering the boundedly
rational behaviour of customers from a 4PL perspective,
so as to maximise customer satisfaction under the con-
straints of limited investment budget and service levels.

The main contributions of this paper are summarised
as the following: (i) A novel multi-period distribution
network design problem with boundedly rational cus-
tomers for the SOM supply chain from a 4PL perspec-
tive is proposed. We consider the constraints of invest-
ment budget and service level for service time and deliv-
ery quantity separately. (ii) By transforming the non-
linear objective function into an equivalent novel model
through a scenario-based linear reformulation, CPLEX
can efficiently solve small and medium scale instances.
(iii) The individual-driven Q-learning based memetic
particle swarm optimisation (IDQLMPSO) algorithm is
proposed to effectively and efficiently solve the proposed
model when the computational complexity increases fast
along with demands, periods, and network scales. (âĚş)
From the perspective of 4PL provider mode, some man-
agement insights are given for investors on how to design
a multi-period distribution network under the limited
investment budget with different customer behaviour.
The length of evaluation periods leads to differences
in customer satisfaction due to different perceptions of
‘small loss’ and ‘big gain’ by boundedly rational cus-
tomers.

The remainder of this paper is organised as follows.
In Section 2, the related literature reviews are presented.
Section 3 proposes themulti-period distribution network
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designmodel. The IDQLMPSO algorithm is proposed in
Section 4. Numerical experiments are given in Section 5
to demonstrate the effectiveness and efficiency of the
proposed algorithm, and related problem analysis is per-
formed. Section 6 concludes the paper.

2. Literature review

Network design is one of the most important parts
of the SOM supply chain management. In the past,
researchers have studied network design problem in
manufacturing supply chains under various names and
terms, such as facility location (FL), SCND, production-
distribution network design (PDND), distribution net-
work design, 4PLND and so on. A comprehensive sum-
mary of research related to FL in supply chain manage-
ment is reviewed (Melo, Nickel, and Saldanha-Da-Gama
2009). Govindan et al. reviewed the SCND problem
under uncertainty from different perspectives (Govin-
dan, Fattahi, and Keyvanshokooh 2017). A detailed
review of the distribution network design problem is
provided (Ambrosino and Scutella 2005). Yin et al. stud-
ied the 4PLND problem under uncertain environment.
The 4PLND problem considers not only the decisions of
logistics facilities and delivery quantity, but also the selec-
tion decisions of 3PL providers (Yin et al. 2022). Among
them, SCND and PDND consider the entire production
process, including the supply of raw materials. There are
significant differences in distribution network design and
4PLND, which focus on the logistical service process in
the downstream supply chain. For the distribution net-
work design problem from a 4PL perspective, in addition
to the traditional decisions (Hiremath, Sahu, and Tiwari
2013), it is also necessary to decide on 3PL providers
and the corresponding delivery quantity between differ-
ent locations. Therefore, it can be viewed as a mode in
4PLND.

The multi-period network design problem is clearly
more complicated and has received more attention than
single period. Research on multi-period network design
problem usually considers the dynamic adjustment of
facilities in different periods. Hinojosa et al. considered
that the opening/closing of facilities can be changed in
each period (Hinojosa, Puerto, and Fernández 2000). In
recent years, more scholars have been studying multi-
period network design problem with more practical
significance. Hasani et al. considered multi-period and
multi-product in a robust closed-loop SCND problem
for perishable goods in agile manufacturing (Hasani,
Zegordi, and Nikbakhsh 2012). Arampantzi et al. con-
sidered the selection of suppliers, the establishment of
plants and DCs, and the choice of transportation meth-
ods and routes (Arampantzi, Minis, and Dikas 2019).

Zhang et al. considered multi-period pricing decisions
in a dynamic 4PLND problem under stochastic demand
(Zhang, Huang, and Yin 2021). Currently, studies on
multi-period network design problem are relatively com-
prehensive, but there are still relatively few studies from
the 4PL perspective.

The cost and profit are usually used as key perfor-
mance indicators to evaluate the effectiveness of network
design. In recent years, more scholars take customer
satisfaction as an indicator to measure network per-
formance. Shen and Daskin considered the trade-offs
between service level and cost in the integrated SCND
problem (Shen and Daskin 2005). Lin studied the single-
source capacitated FL problem and considered service
level constraint (Lin 2009). Not only the location of DCs,
but also the overall service level was considered in the dis-
tribution network design problem (Wang, Gunasekaran,
and Ngai 2018). Sabouhi et al. minimised the expected
total cost while ensuring that the minimum customer
service level was achieved (Sabouhi et al. 2020). Huang
et al. considered the psychological behaviour of cus-
tomers from 4PL perspective and maximised demand
satisfaction (Huang et al. 2021). Wang et al. maximised
suppliers and customers satisfaction based on delivery
quantity in a single-period 4PLND problem (Wang et al.
2021). Yin et al. minimised the 4PL network total cost
under the service time constraint (Yin et al. 2021). In the
current study, few studies consider bounded rationality
behaviour when characterising customer satisfaction. At
the same time, service level is only characterised from a
single perspective.

Some scholars have used exact algorithms with the
help of commercial software such as CPLEX to solve the
4PLND problem (Huang et al. 2021; Yin et al. 2021, 2022;
Zhang, Huang, and Yin 2021). However, for large-scale
4PLND problem, the above algorithms may not provide
an efficient solution. The PSO algorithm has the excellent
application in solving the 4PLND problem. Many vari-
ants have been developed to improve its performance.
The existing improved algorithms have mainly focused
on the following five aspects: modified-based, hybrid-
based, cooperative-based, micro-based, and memetic-
based algorithms (Samma, Lim, and Saleh 2016). Among
them, the memetic particle swarm optimisation (MPSO)
algorithm has a good solution effect because it can com-
bine the global search strength of PSO algorithm and
the refinement ability of local search strategy. For the
MPSO algorithm, the most critical challenges include
when to call the local search strategy, how often to call
the local search strategy, and which local search strat-
egy should be used for each individual. Reinforcement
learning, especially the Q-learning algorithm, can adap-
tively select an appropriate local search strategy at each
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step of the search process based on the search state and
the historical performance of the operator. Therefore, the
Q-learning algorithm is considered as a more advanced
method than the traditional methods based on sequen-
tial selection and random selection (Karimi-Mamaghan
et al. 2023). Samma et al. proposed a new reinforcement
learning-based MPSO algorithm that addresses the first
two challenges mentioned above. However, the above
study adopts the same local search strategy for all indi-
viduals in the population and still does not address the
third challenge. Therefore, a IDQLMPSO algorithm is
proposed in this paper. The suitable local search strat-
egy for each individual in the population is automatically
selected.

In this study, we propose a model that integrates 3PL
decisions from a 4PL perspective under the constraints
of investment budget and service level. The IDQLMPSO
algorithm is proposed to effectively and efficiently solve
the above model with real-scale problems.

3. Problem description and formulation

In this section, the multi-period distribution network
design problem with boundedly rational customers from
a 4PL perspective is described, and the notations used
throughout the paper are introduced. In the first model,
the minimum total cost of a multi-period distribution
network that fully satisfies customer demands is calcu-
lated. When the investment budget is less than the mini-
mum total cost, the second model is to establish a multi-
period distribution network that maximises the mini-
mum bounded rationality customer satisfaction. Finally,
the mathematical model is linearly reformulated.

A manufacturing company (such as Haier) wants
to invest in designing a multi-period distribution net-
work to deliver its products and services from plants
to customers through DCs and 3PL providers to reduce
costs and improve customer satisfaction. As a result, it
employs a 4PL provider to offer a comprehensive supply
chain solution. Specifically, manufacturing companies
are investors. A 4PL provider needs to help investors inte-
grate 3PL providers, select the number and location of
DCs, and complete the distribution of product flows from
plants to customers in different periods. The potential
distribution network is shown in Figure 1.

The main assumptions of the model are as follows:

(1) DCs and 3PL providers have four attributes, which
are the fixed construction/ cooperation cost, unit
product processing/ transportation cost, processing/
transportation capacity and processing/ transporta-
tion time.

Figure 1. The potential distribution network.

(2) The capacity and cost of each potential DC and 3PL
provider are predefined.

(3) For 3PL providers, the higher the unit transportation
cost, the shorter the transportation time. At the same
time, the unit transportation cost and transportation
time are proportional to the distance.

(4) It is not necessary to satisfy all customer demands.
(5) The investment budget in each period is determined

based on the minimum network cost.

The notations used throughout the paper are as
follows:
Sets:
V Set of all nodes in the network, including plants,

DCs, and customers
P Set of plants, P ⊂ V
D Set of DCs, D ⊂ V
C Set of customers, C ⊂ V
T Set of periods, t ∈ T, t = 1, 2, . . . ,NT. NT is the

maximum number of periods.
Kij Set of 3PL providers between i ∈ V and j ∈ V

Parameters:
SAt

i Capacity of plant i ∈ P in period t ∈ T
Ftj Fixed construction cost of DC j ∈ D in period

t ∈ T
Ut
j Unit processing cost of DC j ∈ D in period

t ∈ T
Qt
j Processing capacity of DC j ∈ D in period

t ∈ T
PTt

j Processing time of DC j ∈ D in period t ∈ T
f tijk Fixed cooperation cost of 3PL provider Kij in

period t ∈ T
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utijk Unit transportation cost of 3PL provider Kij
in period t ∈ T

qtijk Transportation capacity of 3PL provider Kij in
period t ∈ T

Tt
ijk Transportation time of 3PL provider Kij in

period t ∈ T
Mt Minimum network cost in period t ∈ T
It Investment budget in period t ∈ T
δ Investment budget coefficient
Etj Expected delivery time of customer j ∈ C in

period t ∈ T
Gt
j Service level of customer j ∈ C in period

t ∈ T
Gr
j Required service level of customer j ∈ C

Gmin
j Service level limitation of customer j ∈ C
Decision variables:

xtijk 1 if the 3PL provider Kij is selected in period
t ∈ T; otherwise, 0

ytj 1 if the DC j ∈ D is selected in period t ∈ T;
otherwise, 0

ztijk The delivery quantity of the 3PL provider Kij
in period t ∈ T

3.1. Multi-period distribution networkminimum
cost

Themulti-period distribution network designmodel that
minimises the total cost when customer demands are
fully satisfied is established as follows:

min
∑
t∈T

(∑
i∈D

Fti y
t
i(1−Ht

i )

+
∑
i∈V

∑
j∈V

∑
k∈Kij

f tijkx
t
ijk(1− htijk)+

∑
i∈V

∑
j∈D

∑
k∈Kij

Ut
j z

t
ijk

+
∑
i∈V

∑
j∈V

∑
k∈Kij

utijkz
t
ijk

⎞
⎠ (1)

Ht
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1,

t−1∑
m=1

ymi > 0,∀i ∈ D, t ∈ T\{ 1}

0,
t−1∑
m=1

ymi = 0,∀i ∈ D, t ∈ T\{ 1}
0,∀i ∈ D, t = 1

(2)

htijk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1,

t−1∑
m=1

xmijk > 0,∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T\{ 1}

0,
t−1∑
m=1

xmijk = 0,∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T\{ 1}
0,∀i ∈ V , j ∈ V , k ∈ Kij, t = 1

(3)

∑
j∈V

∑
k∈Kij

ztijk ≤ SAt
i ,∀i ∈ P, t ∈ T (4)

∑
j∈V

∑
k∈Kij

ztijk ≤ ytiQ
t
i ,∀i ∈ D, t ∈ T (5)

ztijk ≤ xtijkq
t
ijk,∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T (6)∑

j∈V

∑
k∈Kij

ztijk =
∑
j∈V

∑
k∈Kji

ztjik,∀i ∈ D, t ∈ T (7)

xtijk ≤ yti ,∀i ∈ D, j ∈ V , k ∈ Kij, t ∈ T (8)

xtjik ≤ yti ,∀i ∈ D, j ∈ V , k ∈ Kji, t ∈ T (9)∑
j∈V

∑
k∈Kij

xtijk ≥ yti ,∀i ∈ D, t ∈ T (10)

∑
j∈V

∑
k∈Kji

xtjik ≥ yti ,∀i ∈ D, t ∈ T (11)

∑
i∈D

∑
k∈Kij

ztijk = Dt
j ,∀j ∈ C, t ∈ T (12)

ztijk ∈ N,∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T (13)

xtijk ∈ {0, 1},∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T (14)

yti ∈ {0, 1},∀i ∈ D, t ∈ T (15)

The objective function (1) is to minimise the total
cost of the distribution network. Among them, the first
two items are the total fixed costs; the last two items are
the total processing and transportation costs. For con-
straints (2) and (3), the variable is 0 when t = 1. For
t ∈ T\{ 1} , as long as there is any period from 1 to (t−1)
when DCs and 3PL providers are selected, the variable
is 1; otherwise, it is 0. Constraints (4)–(6) represent the
capability limitations of plants, DCs and 3PL providers,
respectively. Constraint (7) is the flow balance. Con-
straints (8) and (9) indicate that if a DC is not selected,
3PL providers that can provide services for it cannot be
selected. Constraints (10) and (11) indicate that when a
DC is selected, theremust be at least one 3PL provider for
it to deliver products. Constraint (12) indicates that cus-
tomer demands must be fully satisfied. Constraint (13)
indicates that the delivery quantity of 3PL providers is the
non-negative integer. Finally, constraints (14) and (15)
indicate that decision variables are both 0–1 variable.

3.2. The service level

Due to the limitation of investment budget, it is not possi-
ble to fully satisfy customers. We characterise the service
level from the perspective of service time and delivery
quantity, respectively.
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Nowadays, service time has become an important fac-
tor for manufacturing company. Tt

pdk and Tt
dck are the

transportation time from plants to DCs, and DCs to
customers, respectively. The total service time Timetc of
customer c in period t is as follows:

Timetc = max
p∈P,d∈D,k∈Kpd∪Kdc

{Tt
pdkx

t
pdk + PTt

dz
t
pdk

+ Tt
dckx

t
dck}, ∀c ∈ C, t ∈ T (16)

We use delivery quantity to describe the service level that
manufacturing company can provide to customers. The
specific expression is as follows:

Gt
j =

∑
i∈D

∑
k∈Kij

ztijk
Dt
j

,∀j ∈ C, t ∈ T (17)

3.3. Customer satisfaction

In fact, customer satisfaction with logistics service
depends not only on the service time and delivery quan-
tity, but also on their bounded rationality behaviours.
To characterise the impact of irrationality on customer
satisfaction, this paper uses the value function in PT to
express customer satisfaction (Huang et al. 2021; Wang
et al. 2021).

The service level provided bymanufacturing company
to customers is higher than the required service level,
which is called revenue; otherwise, it’s called loss. The
customer satisfaction can be expressed as follows:

Sj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
NT

NT∑
t=1

Gt
j − Gr

j

)α

,
1
NT

NT∑
t=1

Gt
j ≥ Gr

j

−λ

(
Gr
j −

1
NT

NT∑
t=1

Gt
j

)β

,
1
NT

NT∑
t=1

Gt
j < Gr

j

,

∀j ∈ C (18)

3.4. Multi-period distribution network design
considering bounded rationality behaviour

When the investment budget is lower than the minimum
total cost calculated above, the distribution network can-
not fully satisfy customer demands. A 4PL provider
needs to design network based on bounded rationality
behaviour to maximise customer satisfaction. According
to the description of customer satisfaction, the multi-
period distribution network design mathematical model
that maximises the minimum value of customer satisfac-
tion is established as follows:

max
(
min
j∈C

Sj
)

(19)

s.t. ∑
i∈D

Fti y
t
i(1−Ht

i )+
∑
i∈V

∑
j∈V

∑
k∈Kij

f tijkx
t
ijk(1− htijk)

+
∑
i∈V

∑
j∈D

∑
k∈Kij

Ut
j z

t
ijk

+
∑
i∈V

∑
j∈V

∑
k∈Kij

utijkz
t
ijk ≤ It ,∀t ∈ T (20)

(2) –(11) ∑
i∈D

∑
k∈Kij

ztijk ≤ Dt
j ,∀j ∈ C, t ∈ T (21)

Gt
j ≥ Gmin

j ,∀j ∈ C, t ∈ T (22)

Timetj ≤ Etj ,∀j ∈ C, t ∈ T (23)

(13)–(15)
Formula (19) is the objective function, which max-

imises the minimum customer satisfaction in the multi-
period distribution network. Constraint (20) indicates
that the total network cost cannot exceed the investment
budget in each period. Constraint (21) indicates that the
total amount of products actually arrived cannot exceed
demand, but the shortages are allowed. Constraint (22)
indicates that the service level of each customer in each
period must at least reach the service level limitation.
Constraint (23) indicates that the service time cannot
exceed the expected delivery time in each period.

3.5. The scenario-based linear reformulation

The multi-period distribution network design problem
considering bounded rationality behaviour has been
modelled. In the above model, the objective function
(19) is a non-linear function, the constraint (20) is the
quadratic constraint programming (QCP), and the rest of
constraints are linear constraints. Therefore, this section
transforms the non-linear objective into an equivalent
linear objective (Huang, Zhang, et al. 2019).

The delivery quantity provided by the distribution
network is an integer. If the delivery to customer j in
period t is w, then the service level is Gt

j = w/Dt
j ,∀j ∈

C, t ∈ T. Constraint (22) limits the minimum deliv-
ery. Therefore, the range of delivery quantity to each
customer in each period is [Gmin

j × Dt
j ,D

t
j]. There are

�Dt
j × (1− Gmin

j )+ 1	 potential scenarios for the deliv-
ery quantity for each customer in each period. We
regard the delivery quantity for the same customer
in different periods as one scenario, so there are L =∏NC

j=1
∏NT

t=1 �Dt
j × (1− Gmin

j )+ 1	 scenarios in total.
For customer j ∈ C, the delivery quantity in each period
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t under scenario l is wlt ,∀t ∈ T, l = 
Gmin
j × Dt

j� . . .Dt
j .

Figure 2 presents an example of a scenario tree for
one customer with two scenarios and three periods. To
decide the delivery quantity of each customer in different
periods, we design the decision variable gjl ∈ {0, 1},∀j ∈
C, l = 
Gmin

j × Dt
j� . . .Dt

j . When gjl = 1, it indicates that
the delivery quantity for customer j in each period t is
wlt .We can calculate customer satisfaction Sjl,∀j ∈ C, l =

Gmin

j × Dt
j� . . .Dt

j according to formula (24).

Sjl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
NT

NT∑
t=1

wlt

Dt
j
− Gr

j

)α

,
1
NT

NT∑
t=1

wlt

Dt
j
≥ Gr

j

−λ

(
Gr
j −

1
NT

NT∑
t=1

wlt

Dt
j

)β

,
1
NT

NT∑
t=1

wlt

Dt
j

< Gr
j

,

∀j ∈ C (24)

Then, we transform the original model to the following
model:

max Smin (25)

s.t. (2)–(11) (20)

L∑
l=1

gjl × Sjl ≥ Smin,∀j ∈ C (26)

L∑
l=1

gjl = 1,∀j ∈ C (27)

∑
i∈D

∑
k∈Kij

ztijk =
L∑
l=1

gjlwlt ,∀j ∈ C, t ∈ T (28)

Tt
pdkx

t
pdk + PTt

dz
t
pdk + Tt

dckx
t
dck ≤ Etd,∀p ∈ P, d ∈ D,

c ∈ C, k ∈ Kpd ∪ Kdc, t ∈ T (29)

(13)–(15)
The objective function (25) and constraints (26)–(28)

are equivalent to the original objective function (19)
and constraint (22). Constraint (29) and constraint (23)
are equivalent. After the above transformation, the new
objective function is linear and the constraints are QCP
and linear, so the model can be solved by CPLEX.

Theorem 3.1: The multi-period distribution network
design model considering bounded rationality behaviour
is equivalent to the model after the scenario-based linear
reformulation.

Proof: See Appendix 1. �

TheCPLEX solver can solve the equivalentmodel after
the scenario-based linear reconstruction and provide the

Figure 2. An example of scenario tree.

optimal solution on the small-scale instance. However, as
customer demands, periods, and network scales increase,
the scenarios of the problem grow exponentially. For the
large-scale problem, the CPLEX solver cannot obtain a
feasible solution in a limited time even with the linear
reformulation. Therefore, in Section 4, we propose the
corresponding solution algorithm to deal with the above
problem.

4. The individual-driven Q-learning based
memetic particle swarm optimisation algorithm

Since the network design problem is NP-hard (Shen,
Zhan, and Zhang 2011) and the scenarios in the trans-
formed model grow exponentially, a meta-heuristic
algorithm is proposed to solve the problem. The MPSO
algorithm, which integrates the global search ability of
the PSO algorithm and the refinement ability of the local
search strategy, has been successfully applied to solve
various optimisation problems such as continuous non-
linear and discrete optimisation. The individual-driven
Q-learning (IDQL) algorithm is proposed to address the
challenge of which local search strategy to use for each
individual faced by the MPSO algorithm. Furthermore,
the minimum cost maximum flow algorithm is designed
in Section 4.3 to obtain the maximum network deliv-
ery quantity. Meanwhile, four different types of repair
strategies are designed in Section 4.6. In this section, the
proposed IDQLMPSO algorithm is introduced in detail.

4.1. Encoding and decoding strategies

Encoding Strategy: We adopt a one-dimensional integer
encoding method and each node in the distribution net-
work is labelled in the order of plants, DCs, and cus-
tomers. An adjacency matrix is established according



8 Y. ZHANG ET AL.

Figure 3. An example of the encoding strategy.

Figure 4. An example of the decoding strategy.

to 3PL providers between two nodes. Then according
to the number of optional arcs between two nodes in
the adjacency matrix, the integer encoding range of the
particle is determined. Specifically, assuming that there
are n 3PL providers between two nodes, the position
encoding range is [0, 2n − 1], and the velocity encoding
range is [−(2n − 1), 2n − 1]. For example, the potential
distribution network shown in Figure 1 can be trans-
formed into the adjacency matrix in Figure 3, which
also gives the corresponding particle position encoding
range.

The length of encoding, that is, the spatial dimen-
sion of particle is determined by the product of num-
ber of non-zero elements in the adjacency matrix and
period T. We take the adjacency matrix in Figure 3 as
an example, assuming that T = 3, the encoding length is
3∗17 = 51.

Decoding Strategy: The binary decoding is adopted to
convert integer encoding to 0–1 binary, the selection of
3PL providers between any two nodes can be judged in
order from the lowest to the highest. At the same time,
the decisions of DCs can be judged according to 3PL
providers. Taking node 1 and 3 in Figure 3 as an example,
the situation where the decision variables are obtained
through the decoding strategy is shown in Figure 4.

4.2. Population initialisation

Population initialisation is to randomly initialise the
position and velocity of each particle in each dimension
by choosing a random integer in the range. Therefore, the

decision variables xtijk,∀i ∈ V , j ∈ V , k ∈ Kij, t ∈ T and
ytj ,∀j ∈ D, t ∈ T can be obtained.

4.3. Minimum costmaximumflow algorithm

When the DCs and 3PL providers is determined, the
multi-period distribution network design problem is
transformed into the problem of allocating delivery
quantity. The minimum cost maximum flow (MCMF)
algorithm is used to solve the above problem. Since the
MCMF algorithm is suitable for solving network prob-
lems from a single source node to a single sink node
while the intermediate nodes have no cost and capacity
restrictions, we respectively add a virtual source node and
a virtual sink node. We connect and translate the capa-
bility and cost of plants and customer demands through
virtual arcs. Similarly, we add virtual intermediate nodes
and virtual arcs to represent the cost, capability, and time
properties of DCs. The MCMF algorithm is used to cal-
culate the delivery quantity of 3PL providers to ensure
that the constraints (4)–(7), (13) and (18) are satisfied.
However, the result of flow assignment may violate (20),
(22) or (23), whichwill be dealt with in the solution repair
process.

4.4. Fitness function

In this paper, maximising the minimum customer satis-
faction in the multi-period distribution network is taken
as the fitness function. The objective is to find the particle
that maximises the minimum value of all customer satis-
faction among all particles that satisfy the constraints.

4.5. Update formula

The update methods of the particle velocity and posi-
tion in the population are shown in equations (30)
and (31):

vn+1iD = wvniD + c1ξ(pniD − xniD)+ c2η(pngD − xniD) (30)

xn+1iD = xniD + vn+1iD (31)
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where vn+1iD and xn+1iD represent the velocity and posi-
tion of particle i in (n+ 1)th generation, both of which
are integers. pni = (pni1, p

n
i2, . . . , p

n
iD) is the best historical

point of the individual particle search in nth generation.
png = (png1, p

n
g2, . . . , p

n
gD) is the best historical point of all

particles in the population found in nth generation. c1
and c2 are learning factors, ξ , η ∈ U[0, 1]. In order to bet-
ter balance the exploration and development capabilities
of the PSO algorithm, this paper adopts the time-varying
inertia weight w, as shown in the following formula:

w = wmax − wmax − wmin

N
× n (32)

4.6. Repair strategies

According to the encoding, decoding strategy and
MCMF algorithm, the definite distribution network can
be obtained. For the above network, four types of infeasi-
ble solutions may appear. First, the updated velocity and
position valuesmay exceed their encoding range. Second,
the distribution networkmay be disconnected. Third, the
total cost may exceed the investment budget. Finally, ser-
vice time and service level may not satisfy limits. For any
infeasible solution, it needs to be repaired.

(1) Encoding range violation: For the case that the veloc-
ity/ position encoding value exceeds its encoding
range, the repair strategy we adopt is to take the
boundary value.

(2) Network disconnection repair: According to the
network structure, disconnection can be roughly
divided into three situations. (a) The customers are
not connected to the network, and there are no 3PL
providers to serve customers. (b) The plants are not
connected to the network, resulting in products can-
not reach customers through DCs. (c) The DCs are
disconnected to the network, resulting in the net-
work not meeting the constraint of flow balance.
When the above situation appears, we randomly add
one or more arcs at the corresponding disconnected
nodes. The specific network disconnection repair is
shown in Figure 5.

(3) Cost adjustment strategy: For the constraint (20), the
total cost consists of two parts: fixed cost and trans-
portation processing cost. In the first stage, a con-
nected network is determined, and the fixed cost can
be determined according to the selection of DCs and
3PL providers. According to the logistics network
determined and the customer demands, the MCMF
algorithm is used to obtain the delivery quantity and
transportation processing cost in the second stage.

If the fixed cost is higher than the investment bud-
get, the delivery quantity is allocated 0. Otherwise,
customer demands are adjusted according to the
formula below.

�Dt
j = Dt

j − Dt
j ×

�It

It
× 1

NC
(33)

Among them, �It is the difference between the total
network cost and the investment budget. NC is the num-
ber of customers, and �Dt

j is the demand of customer j
in period t after cost adjustment. Then, the demand is
rounded up as the current demand for the next calcula-
tion. We should check before and after each adjustment
until the constraint (20) is satisfied.

(4) The service level repair: When actual service level is
less than the service level limitation or the service
time exceeds the expected delivery time, the delivery
quantity of customer j in current period t is adjusted
to 0.

There may be new infeasible solutions generated dur-
ing the repair process, so it is necessary to repair dis-
tribution network several times until all constraints are
satisfied.

4.7. Local search strategies

This section introduces four local search strategies com-
bined with the PSO algorithm to generate the MPSO
algorithm. The following four local search strategies are
designed:

(1) Randomly select the position where the particle
changes, and change the value of that positionwithin
the encoding range.

(2) Randomly select two positions of the particle and
exchange the values of the two positions.

(3) A range of particle is randomly selected and
swapped.

(4) Two positions of the particle are randomly selected,
the values of these two positions are placed in the
head of the new arrangement, and the values of
the remaining positions are arranged in the original
order.

4.8. Individual-driven Q-learning algorithm

The MPSO algorithm improves the performance of PSO
algorithm to a certain extent. In this paper, the IDQL
algorithm is proposed to determine when and which
local search strategy to use for each individual. The
definition of the state, action, reward function, and
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Figure 5. Network disconnection repair.

Q-value update are the key elements that affect the
algorithm performance.

4.8.1. State
The states in Q-learning represent the characteristics of
the external environment. In this paper, the fitness of
each individual in the population is defined as the cur-
rent state. When the maximum number of iterations is
N, the number of individuals in the population isM, and
the state space S = {s11, s12, . . . , sNM}.

4.8.2. Action
Four local search strategies are defined as the alternative
actions, and the action space is A = {a1, a2, a3, a4}.

4.8.3. Reward function
The reward function reinforces the effective actions of
each state by rewarding improving states while punish-
ing degenerate states.We set the reward function for each
individual in the population. Assuming that fit(n)(m)
is the fitness of the mth individual in the current nth

generation, the reward function is set as follows:

reward(n)(m) = fit(n)(m)− fit(n− 1)(m) (34)

4.8.4. Individual-driven Q-value
The Q-value reflects the search ability under a certain
state-action, that is, the utility of the local search strategy
for different individuals. We design an individual-driven
Q-Value, and the update is defined as:

Q(s(n+1)m, ai) = Q(snm, ai)+ αn[rnmi

+ γ argmax
a∈A

Q(s(n+1)m, a)

− Q(snm, ai)],

∀n ∈ N,m ∈ M, i ∈ A (35)

In this paper, we use the following dynamic adjustment
αn (Rakshit et al. 2013):

αn = 1−
(
0.9× n

N

)
(36)

The specific steps of the IDQL algorithm are shown in
Algorithm 1.

4.9. An individual-driven Q-learning basedmemetic
particle swarm optimisation algorithm

The PSO algorithm is combined with four local search
strategies to form the MPSO algorithm. To select the
most appropriate action to achieve the best performance
based on the state of each individual in the population, we
design an individual-driven Q-learning algorithm. Com-
bining the IDQL algorithm with the MPSO algorithm
can effectively solve the current challenges faced by
MPSO algorithm. The specific steps of the IDQLMPSO
algorithm are shown in Algorithm 2.

5. Numerical experiments

In this section, numerical experiments are designed to
analyse the algorithm performance and significance of
the multi-period manufacturing distribution network
design considering 4PL provider and bounded rational-
ity behaviour. Firstly, we present numerical experimental
schemes and performance indexes. Secondly, we com-
pare GA and DE algorithm that are also widely used
in the SCND problem (Faramarzi-Oghani et al. 2022).
At the same time, for each individual, the sequentially
selected MPSO (SMPSO) and the randomly selected
MPSO (RMPSO) (Karimi-Mamaghan et al. 2023) are
compared. Therefore, the solution results of CPLEX,
PSO,GA,DE, SMPSO, RMPSO,QLMPSO (Samma, Lim,
and Saleh 2016), and IDQLMPSO algorithm are com-
pared. Finally, we analyse the impact of related problem
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Algorithm 1: IDQL algorithm.

Input: Current iteration: n; Population:M; local; GBfit(n); Other parameters
Output: Q-value
1: average =

∑M
i=1 (GBfit(n)− fit(Xi))/M

2: if local = 0 then
3: if GBfit(n)− fit(Xi) ≥ average then
4: Update velocity and position of particle i according to (30) and (31);
5: end if
6: if 0 ≤ GBfit(n)− fit(Xi) < 0.25× average then
7: Perform action a1 ;
8: end if
9: if 0.25× average ≤ GBfit(n)− fit(Xi) < 0.5× average then
10: Perform action a2 ;
11: end if
12: if 0.5× average ≤ GBfit(n)− fit(Xi) < 0.75× average then
13: Perform action a3 ;
14: end if
15: if 0.75× average ≤ GBfit(n)− fit(Xi) < average then
16: Perform action a4 ;
17: end if
18: end if
19: if local 
= 0 then
20: if GBfit(n)− fit(Xi) ≥ average then
21: Update velocity and position of particle i according to (30) and (31);
22: end if
23: if GBfit(n)− fit(Xi) < average then
24: for j = 1 to 4 do
25: if Q(sni , a) > Q(sni , aj), a ∈ A, a 
= j then
26: best← a;
27: end if
28: end for
29: Perform action abest ;
30: end if
31: end if
32: Calculate the corresponding Reward(n)(i)(best);
33: Update Q(s(n+1)i , abest);
34: if j 
= best do
35: Q(s(n+1)i , aj)← Q(sni , aj);
36: end if
37: return Q-value

parameters on distribution network design. The above
algorithms are coded in C, the version of the CPLEX
solver is IBM ILOG CPLEX 12.8, and the instances are
solved using the Intel(R) Xeon(R) Gold 6146 CPU @
3.20GHz.

5.1. Experimental design

In the actual case, the Cainiao logistics network currently
has seven DCs in China. Assuming that each province in
China has one retailer (customer), the actual case scale is
around 50 nodes (Wang et al. 2021). Therefore, combined
with the actual case scale, we design numerical experi-
ments with 9, 14, 24 and 51 nodes respectively. We set
period T = 3, and there are 3 selectable 3PL providers in
the distribution network. The transportation time in the
dataset is calculated based on the actual distance between
two nodes, and the unit transportation cost and fixed
cooperation cost are inversely proportional to the trans-
portation time. Some variable parameters are assumed
to follow the uniform distributions (Huang et al. 2021;

Algorithm 2: IDQLMPSO algorithm.

Input: Iteration: N; Population:M; Other parameters
Output: GBest,GBfit(N),LBfit(N)(M)

1: for i = 1 toM do
2: Random initialisation velocity and position of particle i;
3: Allocate delivery quantity and repair the infeasible solutions;
4: Evaluate particle fit(Xi) and set pBesti = Xi , LBfit(0)(i)← fit(Xi);
5: end for
6: GBfit(0) = max{fit(Xa)}, a ∈ M,GBest← pBesta, local = 0,

judge(1) = 1;
7: for n = 1 to N do
8: if judge(n) = 1 then
9: for i = 1 toM do
10: Update velocity and position of particle i;
11: Allocate delivery quantity and repair the infeasible solutions;
12: Evaluate particle fit(Xi);
13: if fit(Xi) > fit(pBesti) then
14: LBfit(n)(i)← fit(Xi), pBesti = Xi ;
15: end if
16: if fit(pBesti) > GBfit(n− 1) then
17: GBfit(n) = fit(pBesti), GBest← pBesti , decision = 1;
18: end if
19: end for
20: if decision = 1 then
21: judge(n+ 1) = 1;
22: end if
23: if decision 
= 1 then
24: GBfit(n) = GBfit(n− 1), judge(n+ 1) = 2;
25: end if
26: Q(s(n+1)m , a)← Q(snm , a);
27: end if
28: if judge(n) = 2 then
29: for i = 1 toM do
30: Algorithm 1;
31: Allocate delivery quantity and repair the infeasible
solutions;

32: Evaluate particle fit(Xi);
33: if fit(Xi) > fit(pBesti) then
34: LBfit(n)(i)← fit(Xi), pBesti = Xi ;
35: end if
36: if fit(pBesti) > GBfit(n− 1) then
37: GBfit(n) = fit(pBesti), GBest← pBesti , decision = 1;
38: end if
39: end for
40: if decision = 1 then
41: judge(n+ 1) = 2;
42: end if
43: if decision 
= 1 then
44: GBfit(n) = GBfit(n− 1), judge(n+ 1) = 1;
45: end if
46: end if
47: local = local+ 1;
48: end for
49: return GBest,GBfit(N), LBfit(N)(M)

Shen, Zhan, and Zhang 2011). The capacity of each plant
is taken fromU [1000, 10,000], the unit processing cost of
eachDC is taken fromU [30, 50], the processing capacity
of each DC is taken from U [500, 1000], the processing
time of each DC is taken from U [0.06, 0.1], the trans-
portation capacity of each 3PL provider is taken from U
[40, 180], the unit shortage cost of each customer is taken
fromU [250, 500], the expected delivery time of each cus-
tomer is taken from U [120, 150], the demand of each
customer is taken from U [50, 240], the required service
level of each customer is 0.7, the service level limitation
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Table 1. Data set.

The minimum cost

Instances P D C t = 1 t = 2 t = 3

9 nodes 2 3 4 102,610 78,776 117,636
14 nodes 3 4 7 413,160 396,730 521,898
24 nodes 7 6 11 553,045 545,952 738,606
51 nodes 10 7 34 1,413,175 1,654,020 2,206,680

Table 2. Parameter combination schemes for four scale
instances.

Instances M N γ wmax wmin c1 c2

9 nodes 120 100 0.9 1.1 0.3 3.5 0.5
14 nodes 130 110 0.8 1.0 0.3 2.5 1.5
24 nodes 150 130 0.8 0.9 0.3 2.5 1.5
51 nodes 180 150 0.8 0.9 0.3 2.5 1.5

is 0.5. According to previous research, both α and β are
set to 0.88 and λ = 2.25 in PT (Huang et al. 2021; Wang
et al. 2021). The distribution network structure and the
corresponding minimum cost are shown in Table 1.

The performance indexes used in parameters set-
ting are explained as follows: the best solution (BS), the
worst solution (WS), the mean value (Mean), the sam-
ple standard error (SE) and the average time (Time)
of R runs. Among them, SE is calculated as shown in
equation (37).

SE =

√
1

R−1
R∑
i=1

(xi −Mean)2

Mean
× 100% (37)

5.2. Performance analysis

The parameters in the algorithm are adjusted under
four different scale numerical experiments to find the
most reasonable parameter combination scheme of the
IDQLMPSO algorithm. In the process of adjustment,
only one parameter is changed each time while keeping
other parameters unchanged, and the number of runs is
R = 30. The detailed parameter tuning process is shown
in Appendix 2. Themost reasonable parameter combina-
tions of the IDQLMPSO algorithm under the four scale
numerical experiments are shown in Table 2.

To demonstrate the effectiveness and efficiency of
the IDQLMPSO algorithm, we compare the solution
results of CPLEX, PSO, GA, DE, SMPSO, RMPSO and
QLMPSOalgorithm. Each algorithm runs 30 times under
the respective optimal parameter combination scheme.
Table 3 shows the comparative results of CPLEX and
seven algorithms under four scales numerical exper-
iments. For the three basic algorithms, both the GA
and DE algorithms have longer solution times than the
PSO algorithm. In most cases, the performance of PSO

algorithm is the best among the three indicators of BS,
WS, andMean. The PSO algorithmmay not performwell
in terms of SE due to being easier to fall into the local
optimal solution.We propose the IDQLMPSO algorithm
to overcome its shortcomings. For different improvement
strategies, the Q-learning algorithm performs better in
most cases. At the same time, the method of randomly
selecting the local search strategy for each individual also
performs well. These demonstrate that the Q-learning
algorithm and the improvement for each individual are
effective.

The optimal solution provided by the CPLEX solver
can be used as the benchmark solution to verify the per-
formance of our proposed algorithm on the small-scale
instance. It can be seen from the comparison that in
the 9-node instance, IDQLMPSO algorithm can solve
the same optimal solution as CPLEX in a shorter time.
For the 14-node instance, CPLEX can obtain an efficient
solution within a set time of 7200s. The IDQLMPSO
algorithm can obtain a better BS in less time. For large-
scale instances, CPLEX cannot obtain a feasible solu-
tion in a limited time. Indeed, the quality and effi-
ciency of the CPLEX solver are highly dependent on the
algorithm complexity. The algorithm complexity grows
exponentially rapidly as the number of the constraints
and decision variables increases. However, the heuris-
tic algorithm is mainly affected by the population size
and the number of iterations, the proposed IDQLMPSO
algorithm is not greatly affected by the instance scale.
Although the advantage is not obvious on the small-
scale instance, the IDQLMPSO algorithm shows absolute
superiority on the quality and running time as the scale
increases.

From the above performance indexes, it can be seen
that the proposed algorithm can not only effectively help
the PSO algorithm to get out of the problemof falling into
the local optimal solution, but also overcome the short-
coming that the local search strategy takes too long time
to solve. The IDQLMPSO algorithm can obtain a better
solution in a shorter time.

To compare the convergence and stability of the algo-
rithms, we plot the convergence plots and boxplots
for different scale instances in Figure 6. Among the
seven algorithms, the IDQLMPSOalgorithm is obviously
more advantageous in terms of convergence speed and
stability.

5.3. Problem analysis

This section discusses the impact of 4PL provider,
investment budgets, different customer behaviour, and
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Table 3. Numerical experimental results.

Instances Algorithm BS WS Mean GapBS(%) GapMean(%) SE (%) Time (s)

9 nodes CPLEX 0.308242 0.308242 0.308242 0 0 – 245.4
PSO 0.308033 0.280093 0.296796 0.068 3.71 2.50572 30.8574
GA 0.298829 0.272253 0.287515 3.05 6.72 2.67731 51.7469
DE 0.308033 0.278035 0.295134 0.068 4.25 2.39251 47.4287
SMPSO 0.308242 0.272951 0.298408 0 3.19 1.72414 43.5304
RMPSO 0.308242 0.294213 0.299554 0 2.82 1.11962 44.5331
QLMPSO 0.308033 0.298829 0.299625 0.068 2.8 0.796984 55.596
IDQLMPSO 0.308242 0.298829 0.300273 0 2.59 1.07351 35.9623

14 nodes CPLEX 0.241072 0.241072 0.241072 2.34 2.34 – 7200
PSO 0.235425 0.223077 0.232222 4.63 5.93 1.2248 404.64
GA 0.234967 0.219896 0.231803 4.81 6.09 1.17655 618.346
DE 0.235425 0.223986 0.232057 4.63 5.99 1.20572 585.13
SMPSO 0.235425 0.22781 0.232492 4.63 5.82 0.826711 486.437
RMPSO 0.235425 0.22781 0.232876 4.63 5.66 0.872653 475.73
QLMPSO 0.235425 0.22992 0.233046 4.63 5.59 0.810278 823.446
IDQLMPSO 0.241284 0.233323 0.235093 2.25 4.76 0.606722 382.587

24 nodes CPLEX – – – – – – –
PSO 0.294998 0.261813 0.279926 – – 4.17207 1543.78
GA 0.294998 0.26028 0.277469 – – 3.72818 3202.59
DE 0.296647 0.261562 0.279618 – – 3.15239 3246.91
SMPSO 0.296647 0.262374 0.286573 – – 3.64702 1770.25
RMPSO 0.296647 0.264194 0.28691 – – 3.38868 1766.55
QLMPSO 0.296647 0.264444 0.288833 – – 2.89945 2586.82
IDQLMPSO 0.298683 0.285968 0.292088 – – 1.19704 1380.66

51 nodes CPLEX – – – – – – –
PSO 0.212863 0.162188 0.190144 – – 7.97728 7606.82
GA 0.212495 0.158356 0.187456 – – 6.67264 9912.42
DE 0.212863 0.161033 0.188494 – – 4.52608 10029.4
SMPSO 0.213368 0.183657 0.201891 – – 2.77783 8687.95
RMPSO 0.213519 0.184147 0.20262 – – 2.97145 8765.03
QLMPSO 0.213932 0.185149 0.202992 – – 3.20429 9176.95
IDQLMPSO 0.216309 0.199708 0.209389 – – 2.12666 6869.71

Note: The bold values represent the optimal values for each performance index.

Figure 6. The convergence plots and boxplots for different scale instances.

customer satisfaction evaluation periods on the distribu-
tion network through the CPLEX solver in the 9-node
instance and provides some management insights.

5.3.1. The influence of 4PL provider
To investigate the influence of 4PL provider on themulti-
period distribution network, we compare 4PL provider
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Figure 7. The influence of 4PL provider on customer satisfaction.

Table 4. The influence of 4PL provider on cost.

The minimum cost for each period

Cases t = 1 t = 2 t = 3 The minimum total cost

4PL 102,610 78,776 117,636 299,022
3PL1 218,300 118,420 177,720 514,440
3PL2 195,250 92,130 138,300 425,680
3PL3 182,350 77,550 116,340 376,240

with the single 3PL provider. The comparison results in
Table 4 show that 4PL provider is effective in reducing
the total cost of distribution network when the customer
demands are fully satisfied.

When the investment budget is insufficient, we com-
pare the 4PL provider mode with a single 3PL provider
mode.We allocate the investment budget for each period
according to the proportion of the minimum cost per
period. From the results in Figure 7, we can find
that a 4PL provider can help manufacturing companies
improve customer satisfaction under the same invest-
ment budget. Therefore, it is verified by numerical exper-
iments that a 4PL provider can reduce cost and improve
customer satisfaction of the multi-period distribution
network.

5.3.2. The influence of investment budget
The investment budget is an important factor affecting
network structure and customer satisfaction. When the
investment budget coefficient δ is less than 1, the net-
work cannot fully satisfy customer demands. This section

discusses the impact of the change in δ on customer
satisfaction.

The result in Figure 8 shows that the change in cus-
tomer satisfaction ismore dramatic in the ‘loss’ state than
in the ‘gain’ state when the investment budget coefficient
changes equally. This indicates that customers are more
sensitive to ‘loss’ than to ‘gain’. This also verifies the risk-
averse characteristics in the face of ‘gain’ and risk-seeking
characteristics in the face of ‘loss’ for bounded rationality
customers. When customer satisfaction is around 0, the
service level is close to the required service level of cus-
tomers. Around this point, that is, when the investment
budget coefficient is between 0.65 and 0.7, increasing the
unit investment budget changes the most in customer
satisfaction. Therefore, when the investment budget is
not sufficient, additional investment around the required
service level makes the most sense.

5.3.3. The influence of different customer behaviour
In this section, we compare the effects of rational cus-
tomers and boundedly rational customers with different
behavioural characteristics on the problem. We assume
that α = 1, β = 1, λ = 1 represents the rational cus-
tomer, that is, risk neutral. There are two types of bound-
edly rational customers, α = 0.88, β = 0.88, λ = 2.25
for risk seeker (Tversky and Kahneman 1992), α =
0.52, β = 0.52, λ = 1.51 for risk averse (Xu, Zhou, andXu
2011).
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Figure 8. The influence of investment budget.

Figure 9. The influence of different customer behaviour.

The results in Figure 9 show that when actual service
level reaches the required service level, that is, when cus-
tomer is in the ‘gain’ state, considering bounded rational-
ity behaviour can help manufacturing companies design
a distribution network at a relatively low cost to improve
customer satisfaction. Conversely, when the service level
is low, considering bounded rationality behaviour can
urge manufacturing companies to increase investment as
soon as possible and rapidly improve customer satisfac-
tion.

At the same time, it can be found that under the ‘gain’
state, when the investment budget is the same, the sat-
isfaction of risk-averse customers is the highest, and the
satisfaction of risk-seeking customers is the lowest.When
the ‘loss’ state, the above situation is exactly the oppo-
site. This indicates that risk-averse customers prefer to
‘seek stability’, showing more satisfaction when faced
with ‘gain’ and the more dramatic decline in satisfaction

when faced with ‘loss’. However, risk-seekers prefer ‘risk-
taking behaviour’ and expect to seek greater gains, so they
are less satisfied than risk-averse customers when faced
with ‘gain’. They are more ‘risk tolerant’ and their satis-
faction declinesmore slowlywhen facedwith ‘loss’. At the
same time, manufacturing companies need more invest-
ment to be able to satisfy the required service level of
risk-seeking customers.

5.3.4. The influence of customer satisfaction
evaluation periods
In this paper, we characterise the long-period customer
satisfaction by the average service level over all periods.
As shown in equation (18), we call this overall long-
period evaluationM1. In addition, as shown in equations
(38)–(39), we can obtain customer satisfaction through
the service level per period, and then obtain an aver-
age customer satisfaction. This short-period evaluation
is called M2.

Stj =
{

(Gt
j − Gr

j )
α , Gt

j ≥ Gr
j

−λ(Gr
j − Gt

j)
β , Gt

j < Gr
j

, ∀j ∈ C, t ∈ T

(38)

Sj = 1
NT

NT∑
t=1

Stj , ∀j ∈ C (39)

By comparison in Figure 10, it can be found that when
the investment budget coefficient is 0.7, M1 has achieved
the required service level, while the customer satisfac-
tion of M2 is less than 0. This shows that the ‘small
loss’ and ‘big gain’ can be integrated through the long-
period customer satisfaction, and the negative emotion
brought by the ‘loss’ can be offset by the pleasure brought
by the ‘gain’. At the same time, manufacturing compa-
nies can achieve the required service level at a lower cost
by the long-period customer satisfaction. However, when
the investment budget is insufficient and the service level
is low, manufacturing companies can choose the short-
period evaluation. Therefore, under different service lev-
els, manufacturing companies can choose different peri-
ods to evaluate customer satisfaction so as to maximise
customer satisfaction with the same investment.

6. Conclusion

In this paper, a novel multi-period distribution net-
work design problem with boundedly rational customers
for the SOM supply chain from a 4PL perspective is
proposed.
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Figure 10. The influence of customer satisfaction evaluation
periods.

• The service level is considered for service time and
delivery quantity separately. A mixed integer non-
linear programming model is established to obtain a
network solution with maximum customer satisfac-
tion based on PT under the constraints of investment
budget and service level.

• To deal with the non-linear objective function, a
scenario-based equivalent linear reformulation is pro-
posed, and the small and medium scale distribu-
tion networks can be efficiently solved by the CPLEX
solver.

• Aiming at the computation difficulty brought by a
large number of scenarios caused by demands, periods
and network scales, the IDQLMPSO algorithm is pro-
posed. Numerical experiments at different scales show
that the proposed algorithm outperforms the CPLEX
solver in terms of solution time and solution quality in
most cases.

The problem analysis shows that a 4PL provider can
reduce total cost and improve customer satisfaction in a
multi-period distribution network compared to the sin-
gle 3PL provider. At the same time, the multi-period dis-
tribution network design will be affected by the bound-
edly rational customer behaviour, so the investment strat-
egy of designing the distribution network can be adjusted
according to the analysis.

Behavioural analysis shows that boundedly rational
customers are risk-averse in the face of ‘gain’ and risk-
seeking in the face of ‘loss’. The manufacturing compa-
nies need more investment to satisfy the required ser-
vice level of risk-seeking customers. Finally, by analysing
the customer satisfaction evaluation periods, the long-
period customer satisfaction evaluation can integrate

‘small loss’ and ‘big gain’ and achieve the required ser-
vice level at a lower cost. At the same time, we present
the short-period evaluation to help manufacturing com-
panies choose different evaluation periods at different
service levels, thereby maximising customer satisfaction
with the same investment.

In the post-epidemic era, supply chain resilience plays
a crucial role in protecting supply chains against the
large-scale disruption (Rahman et al. 2022). How to
measure resilience under stochastic disruptions is a big
challenge we are facing. The simulation-based methods
can be used to evaluate resiliency strategies impact on
supply chain performance and select the best response
plan before the next disruption (Xu et al. 2015; Moosavi
and Hosseini 2021; Goodwin et al. 2022). Further, the
proposed IDQLMPSO algorithm can be combined with
the optimal computing budget allocation method (Chen
et al. 2000; Chen and Lee 2011; Zhang et al. 2017) to solve
the resilient supply chain network design problem with
stochastic disruptions.
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Appendices

Appendix 1. Proof of Theorem 1

In this section, we prove that the objective function (19), the
constraints (21)–(23) and the objective function (25), the con-
straints (26)–(29) are equivalent.

Through the constraints (21)–(22), it can be known that
the delivery quantity

∑
i∈D

∑
k∈Kij

ztijk, ∀j ∈ C, t ∈ T is an inte-
ger value between Gmin

j × Dt
j and Dt

j . The scenario wlt ,∀l ∈
L, t ∈ T ensures that the above constraints are satisfied. Con-
straint (28) represents the delivery quantity. Constraint (23)
and Constraint (29) are equivalent. Therefore, the objective
functions are equivalent to prove that the scenario-based linear
reformulation is equivalent.
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Because of the decision variable gjl ∈ {0, 1},∀j ∈ C, l = 
Gmin
j

× Dt
j� . . .Dt

j and
∑L

l=1 gjl = 1,∀j ∈ C, we can obtain:
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The objective function (19) can be equivalently transformed
into objective function (25) and constraint (26). Therefore, the
linearly reformulatedmodel is equivalent to the originalmodel.

Appendix 2. Parameters tuning

In the parameter adjustment process of the IDQLMPSO
algorithm, only one parameter is adjusted each time and the
other parameters are fixed. First, the 9-node instance exper-
iment is presented. The analysis of the population size M is
shown in Table A1. Through the comparison of the results
based on the values of BS, WS, Mean, SE, and Time with dif-
ferent M values, it is found that it is better to set M equal to
120.

The analysis of the maximum number of iterations N is
shown in Table A2. Through the comparison of the results
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Table A1. Parameter tuning for the population size (M).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

60 60 0.9 1.1 0.3 3.5 1.0 0.298829 0.234011 0.281687 9.35647 10.9384
90 60 0.9 1.1 0.3 3.5 1.0 0.298829 0.234011 0.29332 5.7114 15.1145
120 60 0.9 1.1 0.3 3.5 1.0 0.308033 0.234011 0.296603 4.14869 20.6441
150 60 0.9 1.1 0.3 3.5 1.0 0.308033 0.234011 0.296031 4.07477 23.2845

Table A2. Parameter tuning for the maximum number of iterations (N).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 60 0.9 1.1 0.3 3.5 1.0 0.308033 0.234011 0.296603 4.14869 20.6441
120 80 0.9 1.1 0.3 3.5 1.0 0.308033 0.234011 0.296766 4.05421 27.9707
120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3064
120 120 0.9 1.1 0.3 3.5 1.0 0.308242 0.294213 0.299245 0.859415 40.1194

Table A3. Parameter tuning for the decay rate (γ ).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3064
120 100 0.8 1.1 0.3 3.5 1.0 0.308242 0.234011 0.298002 4.37571 33.8405
120 100 0.7 1.1 0.3 3.5 1.0 0.298829 0.234011 0.293807 5.64457 34.7489

Table A4. Parameter tuning for the maximal inertia weight (wmax).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 100 0.9 1.2 0.3 3.5 1.0 0.308242 0.283401 0.298259 1.00038 30.4202
120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3064
120 100 0.9 1.0 0.3 3.5 1.0 0.308033 0.234011 0.297121 4.16388 31.0123
120 100 0.9 0.9 0.3 3.5 1.0 0.308033 0.234011 0.28851 8.10975 30.3709

based on the values of BS, WS, Mean, SE, and Time with dif-
ferent N values, it is found that it is better to set N equal to
100.

The analysis of the decay rate γ is shown in Table A3.
Through the comparison of the results based on the values of
BS,WS,Mean, SE, and Time with different γ values, it is found
that it is better to set γ equal to 0.9.

The analysis of the maximal inertia weight wmax is shown
in Table A4. Through the comparison of the results based on
the values of BS, WS, Mean, SE, and Time with different wmax
values, it is found that it is better to set wmax equal to 1.1.

The analysis of the minimal inertia weight wmin is shown
in Table A5. Through the comparison of the results based on

the values of BS, WS, Mean, SE, and Time with different wmin
values, it is found that it is better to set wmin equal to 0.3.

The analysis of the self-learning factor c1 is shown in
Table A6. Through the comparison of the results based on the
values of BS, WS, Mean, SE, and Time with different c1 values,
it is found that it is better to set c1 equal to 3.5.

The analysis of the social learning factor c2 is shown in
Table A7. Through the comparison of the results based on the
values of BS, WS, Mean, SE, and Time with different c2 values,
it is found that it is better to set c2 equal to 0.5.

The parameter tuning for the remaining three scale
instances is based on the same process described above.

Table A5. Parameter tuning for the minimal inertia weight (wmin).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 100 0.9 1.1 0.4 3.5 1.0 0.308033 0.234011 0.295129 5.68555 30.5828
120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3064
120 100 0.9 1.1 0.2 3.5 1.0 0.308242 0.292532 0.298933 0.702598 31.6657

Table A6. Parameter tuning for the self-learning factor (c1).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3064
120 100 0.9 1.1 0.3 3.0 1.0 0.308033 0.234011 0.29481 5.1424 32.1458
120 100 0.9 1.1 0.3 2.5 1.0 0.308033 0.234011 0.296731 4.45186 30.9129
120 100 0.9 1.1 0.3 2.0 1.0 0.3049 0.234011 0.292352 5.59137 34.2503

Table A7. Parameter tuning for the social learning factor (c2).

M N γ wmax wmin c1 c2 BS WS Mean SE (%) Time (s)

120 100 0.9 1.1 0.3 3.5 2.0 0.308033 0.234011 0.285885 8.8057 31.0825
120 100 0.9 1.1 0.3 3.5 1.5 0.308242 0.278612 0.298516 1.72427 32.3064
120 100 0.9 1.1 0.3 3.5 1.0 0.308242 0.280093 0.29946 1.63302 32.3147
120 100 0.9 1.1 0.3 3.5 0.5 0.308242 0.298829 0.300273 1.07351 35.9623
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